mg电子4355线路|主頁欢迎您

<tr id="nnmko"><label id="nnmko"></label></tr>

<td id="nnmko"><option id="nnmko"></option></td>
<output id="nnmko"></output>
  • <pre id="nnmko"></pre>

    <track id="nnmko"></track>
      <table id="nnmko"><ruby id="nnmko"></ruby></table>

      高中数学知识点

      三角函数公式大全

      来源:三角函数 | 作者:三角函数 | 本文已影响

       

          三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是学习方法网为大家整理的三角函数公式大全

            锐角三角函数公式

        sin α=∠α的对边 / 斜边

        cos α=∠α的邻边 / 斜边

        tan α=∠α的对边 / ∠α的邻边

        cot α=∠α的邻边 / ∠α的对边

        倍角公式

        Sin2A=2SinA?CosA

        Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

        tan2A=(2tanA)/(1-tanA^2)

        (注:SinA^2 是sinA的平方 sin2(A) )

        三倍角公式

        sin3α=4sinα·sin(π/3+α)sin(π/3-α)

        cos3α=4cosα·cos(π/3+α)cos(π/3-α)

        tan3a = tan a · tan(π/3+a)· tan(π/3-a)

        三倍角公式推导

        sin3a

        =sin(2a+a)

        =sin2acosa+cos2asina

        辅助角公式

        Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

        sint=B/(A^2+B^2)^(1/2)

        cost=A/(A^2+B^2)^(1/2)

        tant=B/A

        Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

        降幂公式

        sin^2(α)=(1-cos(2α))/2=versin(2α)/2

        cos^2(α)=(1+cos(2α))/2=covers(2α)/2

        tan^2(α)=(1-cos(2α))/(1+cos(2α))

        推导公式

        tanα+cotα=2/sin2α

        tanα-cotα=-2cot2α

        1+cos2α=2cos^2α

        1-cos2α=2sin^2α

        1+sinα=(sinα/2+cosα/2)^2

        =2sina(1-sin&sup2;a)+(1-2sin&sup2;a)sina

        =3sina-4sin&sup3;a

        cos3a

        =cos(2a+a)

        =cos2acosa-sin2asina

        =(2cos&sup2;a-1)cosa-2(1-sin&sup2;a)cosa

        =4cos&sup3;a-3cosa

        sin3a=3sina-4sin&sup3;a

        =4sina(3/4-sin&sup2;a)

        =4sina[(√3/2)&sup2;-sin&sup2;a]

        =4sina(sin&sup2;60°-sin&sup2;a)

        =4sina(sin60°+sina)(sin60°-sina)

        =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

        =4sinasin(60°+a)sin(60°-a)

        cos3a=4cos&sup3;a-3cosa

        =4cosa(cos&sup2;a-3/4)

        =4cosa[cos&sup2;a-(√3/2)&sup2;]

        =4cosa(cos&sup2;a-cos&sup2;30°)

        =4cosa(cosa+cos30°)(cosa-cos30°)

        =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

        =-4cosasin(a+30°)sin(a-30°)

        =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

        =-4cosacos(60°-a)[-cos(60°+a)]

        =4cosacos(60°-a)cos(60°+a)

        上述两式相比可得

        tan3a=tanatan(60°-a)tan(60°+a)

        半角公式

        tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

        cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

        sin^2(a/2)=(1-cos(a))/2

        cos^2(a/2)=(1+cos(a))/2

        tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

      学习方法网[www.dtqoz0j8.top]

        三角和

        sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

        cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

        tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

        两角和差

        cos(α+β)=cosα·cosβ-sinα·sinβ

        cos(α-β)=cosα·cosβ+sinα·sinβ

        sin(α±β)=sinα·cosβ±cosα·sinβ

        tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

        tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

        和差化积

        sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

        sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

        cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

        cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

        tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

        tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

        积化和差

        sinαsinβ = [cos(α-β)-cos(α+β)] /2

        cosαcosβ = [cos(α+β)+cos(α-β)]/2

        sinαcosβ = [sin(α+β)+sin(α-β)]/2

        cosαsinβ = [sin(α+β)-sin(α-β)]/2

        诱导公式

        sin(-α) = -sinα

        cos(-α) = cosα

        tan (—a)=-tanα

        sin(π/2-α) = cosα

        cos(π/2-α) = sinα

        sin(π/2+α) = cosα

        cos(π/2+α) = -sinα

        sin(π-α) = sinα

        cos(π-α) = -cosα

        sin(π+α) = -sinα

        cos(π+α) = -cosα

        tanA= sinA/cosA

        tan(π/2+α)=-cotα

        tan(π/2-α)=cotα

        tan(π-α)=-tanα

        tan(π+α)=tanα

        诱导公式记背诀窍:奇变偶不变,符号看象限

        万能公式

        sinα=2tan(α/2)/[1+tan^(α/2)]

        cosα=[1-tan^(α/2)]/1+tan^(α/2)]

        tanα=2tan(α/2)/[1-tan^(α/2)]

        其它公式

        (1)(sinα)^2+(cosα)^2=1

        (2)1+(tanα)^2=(secα)^2

        (3)1+(cotα)^2=(cscα)^2

        证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

        (4)对于任意非直角三角形,总有

        tanA+tanB+tanC=tanAtanBtanC

        证:

        A+B=π-C

        tan(A+B)=tan(π-C)

        (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

        整理可得

        tanA+tanB+tanC=tanAtanBtanC

        得证

        同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

        由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

        (5)cotAcotB+cotAcotC+cotBcotC=1

        (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

        (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

        (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

        (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

        cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

        sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

        tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

      更多与文本相关内容,请查看 【 高中数学知识点 】 栏目    


      ------分隔线----------------------------
      ------分隔线----------------------------

       

      mg电子4355线路